-- | Utilities for full-precision raytracing -- {-# OPTIONS_HADDOCK ignore-exports #-} {-# LANGUAGE FlexibleContexts, BangPatterns, DeriveAnyClass, DeriveGeneric #-} module Petzval.Trace ( Ray(..) , _dir, _pos , createRay , HitRecord(..) , TraceError(..) , raytrace , raytrace1 -- * Ray patterns , hexapolarPattern , spiralPattern ) where import Linear import Petzval.System import Petzval.Optics import Numeric.AD.Mode (Scalar, Mode, auto) import Control.DeepSeq import Control.Lens import Control.Monad.State import Control.Monad.Except import Control.Monad.Writer import GHC.Generics import qualified Debug.Trace -- | A ray. The first argument is the direction, and the second data Ray a = Ray (V3 a) (V3 a) deriving (Show, Eq, Generic, NFData) _dir, _pos :: Lens' (Ray a) (V3 a) -- | The direction of a ray _dir = lens (\(Ray _ dir) -> dir) (\(Ray pos _) -> Ray pos) -- | The position of a ray _pos = lens (\(Ray pos _) -> pos) (\(Ray _ pos) dir -> Ray dir pos) toMaybe :: Bool -> a -> Maybe a toMaybe False = const Nothing toMaybe True = Just orError :: (MonadError e m) => Maybe a -> e -> m a orError = maybe throwError (const . return) forceRay :: Ray a -> Ray a forceRay ray@(Ray (V3 !px !py !pz) (V3 !dx !dy !dz)) = ray -- | Create a ray for a given field angle and pupil position. -- -- * The first argument is the image plane position. If `Nothing`, the object is at infinity. -- -- * The second argument is the entrance pupil to aim at -- -- * The third argument is the field angle -- -- * The fourth argument is the normalized pupil coordinates (in the range of \([-1,1]\)) createRay :: (RealFloat a, Mode a, Epsilon a) => Maybe a -- ^ The image plane position. If `Nothing`, the object is at infinity -> Pupil a -- ^ The entrance pupil to aim at -> a -- ^ Field angle, in degrees -> V2 a -- ^ Normalized pupil coordinates (in the range \([-1,1]\)) -> Ray a createRay (Just objectPlane) Pupil{position=pz,radius=pr} h (V2 px py) = Ray source (normalize $ target ^-^ source) where dz = pz - objectPlane source = V3 0 (dz * tan h) objectPlane target = V3 (px * pr) (py * pr) pz createRay Nothing Pupil{position=pz,radius=pr} h (V2 px py) = Ray source (normalize $ target ^-^ source) where h' = (pi * (-abs h) / 180) -- field angle in rad dy = (V3 0 (cos h') (-sin h')) `project` (V3 0 (py * pr) 0) dz = V3 0 (tan h') 1 source = (dy ^-^ dz * 10) & _x .~ (px * pr) target = V3 (px * pr) (py * pr) pz trace1 :: Show a => String -> a -> a trace1 msg = (msg++) . show >>= Debug.Trace.trace hitTest :: (Floating a, Ord a, Mode a, Epsilon a) => Element mat a -> Ray a -> Maybe (Ray a, Maybe (V3 a)) hitTest Stop{_outsideRadius} (Ray pos dir) = toMaybe pass $ (Ray npos dir, Nothing) where dz = pos ^. _z / dir ^. _z npos = pos ^-^ (dir ^* dz) pass = quadrance (npos ^. _xy) <= _outsideRadius ^ 2 hitTest Surface{_curvature, _outsideRadius} ray@(Ray pos dir) = toMaybe (hit1 && hit2) (Ray npos dir, Just normal) where _roc = 1/_curvature origin = pos & _z -~ _roc !a = dir `dot` dir !b = (dir `dot` origin) * 2 !c = (origin `dot` origin) - _roc ^ 2 !det = b^2 - 4 * a * c !hit1 = det >= 0 !p2 = sqrt det !sa = (p2 - b) / 2 / a !sb = (-p2 - b) / 2 / a !s1 = min sa sb !s2 = max sa sb !dist = if s1 >= -0.001 then s1 else s2 !normal0 = normalize $ origin ^+^ dir ^* dist !normal = if (normal0 ^. _z < 0) then -normal0 else normal0 !npos = pos ^+^ dir ^* dist !hit2 = (quadrance $ npos ^. _xy) <= _outsideRadius^2 hitTest ImagingPlane{_thickness} (Ray pos dir) = Just (Ray npos dir, Nothing) where dz = pos ^. _z / dir ^. _z - _thickness npos = pos ^-^ (dir ^* dz) refract :: (Floating a, Ord a, Mode a, Scalar a ~ Double, Epsilon a) => BakedIOR -> V3 a -> Ray a -> Maybe (Ray a) refract (BakedIOR n1 n2) normal (Ray pos incident) = let ni = normal `dot` incident mu = auto $ n1 / n2 det = 1 - mu^2 * (1 - ni^2) in toMaybe (det >= 0) $ Ray pos $ mu *^ incident + (sqrt det - mu * ni) *^ normal -- | The interaction of a ray with a particular element data HitRecord a = HitRecord { pos :: Ray a -- ^ Position of the hit , opl :: a -- ^ Optical path length from the last hit to here } deriving (Show) -- | How a ray failed to complete a trace data TraceError = HitStop -- ^ Ray passed outside the aperture stop | ElementMissed -- ^ The ray missed an element completely | TIR -- ^ The ray hit an element so obliquely that it -- suffered from total internal reflection deriving (Show, Eq) -- | Trace a ray through the give system. Returns the ray after the last element, relative to the vertex of the last element. -- -- This is equivalent to `foldM raytrace1 ray system`, given an appropriate monad stack. raytrace :: (Floating a, Ord a, Mode a, Scalar a ~ Double, Epsilon a) => [Element BakedIOR a] -- ^ The system to trace -> Ray a -- ^ The initial ray -> (Either TraceError (Ray a), [HitRecord a]) raytrace system ray = runIdentity . flip evalStateT (1 :: Double) . runWriterT . runExceptT $ foldM raytrace1 ray system -- | Trace a ray through a single element. Given an appropriate monad, this is a far more powerful interface to tracing than `raytrace` raytrace1 :: ( Floating a, Ord a, Mode a, Scalar a ~ Double, Epsilon a , MonadState Double m , MonadWriter [HitRecord a] m -- ^ Tracing yields a list of , MonadError TraceError m) -- ^ This can fail => Ray a -> Element BakedIOR a -> m (Ray a) raytrace1 ray element = do n1 <- get let stopP = isStop element (nray, mnorm) <- hitTest element ray `orError` (if stopP then HitStop else ElementMissed) let !mat@(BakedIOR _ n2) = maybe (BakedIOR n1 n1) id $ element ^? material !nray' <- maybe (return nray) (\normal -> refract mat normal nray `orError` TIR) mnorm let !opl = distance (ray ^. _pos) (nray ^. _pos) * auto n1 put n2 tell [HitRecord { pos=nray', opl}] return $ nray' &_pos._z -~ element ^. thickness -- | Spiral pattern. This is somewhat more irregular than the hexapolar pattern. The argument is the number of points spiralPattern :: Floating a => Int -> [V2 a] spiralPattern n = map (point . fromIntegral) [0..n-1] where npoints = fromIntegral n - 1 point n = let r = sqrt (n / npoints) theta = 2.3999632297286531 * n in r *^ V2 (sin theta) (cos theta) -- | A hexapolar pattern. This is rather optimally distributed; the argument is the number of rings hexapolarPattern :: Floating a => Integer -> [V2 a] hexapolarPattern nRings = (V2 0 0) : ( mconcat . map ring $ [0..nRings-1]) where ring n = let point t = r *^ V2 (sin t) (cos t) r = (fromIntegral n) / (fromIntegral nRings) in map (point . (\x -> x / (fromIntegral) n * 3 * pi) . fromIntegral) [0 .. n-1]