Got the firmware to compile and produce something vaguely sensible.

This commit is contained in:
2022-04-15 17:28:01 +02:00
parent eae98a8f39
commit 574a60cbb6
5 changed files with 164 additions and 41 deletions

1
firmware/.envrc Normal file
View File

@@ -0,0 +1 @@
eval "$(lorri direnv)"

View File

@@ -1,6 +1,6 @@
Motion control in an interrupt.
= Parts
== Parts
This consists of two parts, the planner and the executor.
The planner receives target positions. Each time it receives a target
@@ -13,7 +13,7 @@ the step lines of the MCU.
These two processes communicate by means of a command queue.
== Executor
=== Executor
1. Update a cycle counter
2. Evaluates the next output of the position polynomial (3 adds)
3. determine whether to toggle a stepper, and do so.
@@ -21,7 +21,7 @@ These two processes communicate by means of a command queue.
== Command queue
=== Command queue
The command queue takes the form of a ring buffer, with each item
containing a motion segment. The ring buffer must be large enough to
@@ -40,9 +40,9 @@ A motion profile segment consists of the following values:
The following invariants hold for the command queue:
== Planner
=== Planner
=== Aborting
==== Aborting
In case of an abort, the fastest stop profile will consist of at most
3 segments: const -jerk to max -a, const -a to to lead-out, const +j

10
firmware/shell.nix Normal file
View File

@@ -0,0 +1,10 @@
{ pkgs ? import <nixpkgs> {} }:
pkgs.mkShell {
buildInputs = [
pkgs.stdenv
# keep this line if you use bash
pkgs.bashInteractive
];
}

View File

@@ -2,6 +2,20 @@ pub mod motion {
pub mod planner;
}
use motion::planner::{Planner, Config};
use crate::motion::planner::State;
fn main() {
println!("Hello, world!");
let planner_config = Config {
j_max: 231.,
v_max: 0.0,
a_max: 100. , // WAG
step_size: 0.2
};
let planner = Planner::new(5_000, planner_config)
.expect("Planner config should succeed");
let profile = planner.plan_profile(planner.step_size() as i64 * 2500, State::default());
println!("Profile: {:#?}", profile);
}

View File

@@ -1,9 +1,18 @@
//! The motion planner.
//!
//! Note that the equations in this file are rather complex and non-obvious.
//! All of their derivations can be found in the motion-control.ipynb file.
use std::num::Wrapping;
pub struct Config {
j_max: f32, // in mm/s^3
v_max: f32, // mm/s^2
// mm/s
a_max: f32,
step_size: f32, // um !
/// Max jerk, in mm/s^3
pub j_max: f32,
/// Max velocity, in mm/s. If 0, 1 step every other tick.
pub v_max: f32, // mm/s
// Max acceleration, in mm/s^2.
pub a_max: f32,
pub step_size: f32,
}
#[derive(Debug, Clone)]
@@ -13,11 +22,15 @@ pub struct Planner {
// the appropriate power of time for the unit.
v_max: u32,
a_max: u32,
rt2_a_max: u32, // square root of a_max
step_size: u32,
// nsteps for each regime
xmax_cj: u32,
xmax_ca: u32,
xmax_cj: u64,
xmax_ca: u64,
tj_max: u32,
ta_max: u32,
}
#[derive(Copy, Clone, Debug)]
@@ -25,10 +38,10 @@ pub struct Profile {
segments: [Segment; 7]
}
#[derive(Copy, Clone, Debug)]
#[derive(Copy, Clone, Debug, Default)]
pub struct Segment {
// Used by executor
pub delta: [u32; 3],
pub delta: [i32; 3],
start_time: u32, // 0 to disable; set after completion.
// used by planner
v0: i32,
@@ -37,9 +50,30 @@ pub struct Segment {
}
impl Segment {
pub fn state_at_time(&self, time: u32) -> State {
let j = self.delta[2] as i32;
let
// This will work for |t|<=65535
pub fn state_at_time_u64(&self, time: u32, step_size: u32) -> (i32, State) {
let j = self.delta[2] as i32; // 6, 0, or -6
let t = time as i64;
let t2 = (time * time) as i64;
// TODO: figure out what can be handled as u32, as 64-bit arithmentic is significantly slower
let dp = (j / 6) as i64 * t * t2 + (self.a0 / 2) as i64 * t2 + self.v0 as i64 * t;
let dv = (j / 2) * (t2 as i32) + self.a0 * time as i32;
let da = j * time as i32;
let time = self.start_time + time;
let pe = self.p0 as i64 + dp;
let p0 = pe.rem_euclid(step_size as i64) as u32;
let nstep = pe.div_euclid(step_size as i64) as i32;
let new_state = State {
time: self.start_time + time,
p0,
a0: self.a0 + da,
v0: self.v0 + dv,
};
(nstep, new_state)
}
}
@@ -53,11 +87,15 @@ pub struct State {
impl State {
fn segment_for(&self, j: i32) -> Segment {
let a0_2 = Wrapping((self.a0 / 2) as u32);
let a0 = Wrapping((self.a0) as u32);
let j_6 = Wrapping((j / 6) as u32);
let j_2 = Wrapping((j / 2) as u32);
Segment {
delta: [
(self.a0 / 2) as u32 + (j / 6) as u32 + self.v0 as u32,
self.a0 as u32 + j as u32,
j as u32,
((self.a0 / 2) + (j / 6) + self.v0),
self.a0 + j,
j,
],
start_time: self.time,
v0: self.v0,
@@ -66,12 +104,16 @@ impl State {
}
}
fn produce_segment(&mut self, j: i32, length: u32) -> Segment {
fn produce_segment(&mut self, j: i32, length: u32, step_size: u32) -> Segment {
let segment = self.segment_for(j);
let t = length;
let t2 = t * length;
let t3 = t2 * length;
self.p0 += (j / 6) as u32 * t3 + (self.a0 / 2) as u32 * t2 + self.v0 as u32 * t;
let t = length as i32;
let t2 = t * length as i32;
let t3 = t2 as i64 * length as i64;
let dp = (j / 6) as i64 * t3
+ (self.a0 / 2) as i64 * t2 as i64
+ self.v0 as i64 * t as i64;
self.p0 = (self.p0 as i64 + dp).rem_euclid(step_size as i64) as u32;
self.v0 += j / 2 * t2 as i32 + self.a0 * t as i32;
self.a0 += j * t as i32;
@@ -89,7 +131,12 @@ impl Planner {
tick_frequency,
v_max: 0,
a_max: 0,
rt2_a_max: 0,
step_size: 0,
xmax_cj: 0,
xmax_ca: 0,
tj_max: 0,
ta_max: 0
};
if ret.reconfigure(config) {
@@ -104,36 +151,87 @@ impl Planner {
pub fn reconfigure(&mut self, config: Config) -> bool {
let tick_rate = self.tick_frequency as f32;
let a_max = (6. * config.a_max * tick_rate / config.j_max)
.clamp(0.0, (1 << 32) as f32);
let v_max = (6. * config.v_max * tick_rate * tick_rate / config.j_max)
.clamp(0.0, (1 << 31) as f32);
let step_size = config.step_size * 6. * tick_rate * tick_rate * tick_rate / config.j_max / 1000.;
.clamp(0.0, (1u32 << 31) as f32);
let v_max = if config.v_max == 0. {
config.step_size * tick_rate / 2.
} else {
config.v_max
};
let v_max = (6. * v_max * tick_rate * tick_rate / config.j_max)
.clamp(0.0, (1u32 << 31) as f32);
let step_size = config.step_size * 6. * tick_rate * tick_rate * tick_rate / config.j_max;
if step_size > (u32::MAX / 2) as f32 {
eprintln!("Failed to configure planner: stepsize = {}", step_size);
return false;
}
self.a_max = a_max as u32;
self.rt2_a_max = a_max.sqrt() as u32;
self.v_max = v_max as u32;
self.step_size = step_size as u32;
// Compute ta_max and tj_max
self.tj_max = self.a_max / 6;
self.ta_max = self.v_max / self.a_max - self.tj_max;
// Compute regime change points
let amax2 = self.a_max * self.a_max;
self.xmax_cj = self.a_max * amax2 / 18; // jmax = 6, xmax_cj = 2*amax^3/jmax^2
self.xmax_ca = self.a_max * self.v_max / 6 + self.v_max * self.v_max / self.a_max;
let a_max_2 = self.a_max as u64 * self.a_max as u64;
self.xmax_cj = self.a_max as u64 / 18 * a_max_2; // jmax = 6, xmax_cj = 2*amax^3/jmax^2
self.xmax_ca = self.a_max as u64 * self.v_max as u64 / 6 + self.v_max as u64 * self.v_max as u64 / self.a_max as u64;
return true;
}
pub fn plan_profile(&self, dx: i32, state: State) -> Profile {
// Note that dx is in internal units
pub fn plan_profile(&self, dx: i64, state: State) -> Profile {
let mut cstate = state;
let (tj, ta, tv) =
if dx.abs() as u32 <= self.xmax_cj {
};
let j = 6;
let dir = dx.signum() as i32;
let dx = dx.abs() as u64;
let (tj, ta) =
if dx <= self.xmax_cj as u64 {
let tj = f32::cbrt(dx as f32 / 2. / j as f32) as u32;
(tj, 0)
} else if dx <= self.xmax_ca as u64 {
let ta_quadrat =
self.a_max * self.a_max / (4 * 36) // amax^3/(4*amax*jmax^2)
+ (dx / self.a_max as u64) as u32;
let ta = f32::sqrt(ta_quadrat as f32) as u32
- self.a_max / 4;
(self.tj_max, ta)
} else {
(self.tj_max, self.ta_max)
};
// Now we have a value for t_j and t_a. Compute the velocity and necessary Δx during t_v
let s4v = j * tj * (ta + tj);
let ramp_dx = (j * tj) as u64 * (ta * ta + 3 * ta * tj + 2 * tj * tj) as u64;
let tv = (dx - ramp_dx) * 2 / s4v as u64;
let tv = ((tv + 1) / 2) as u32;
let j_real = dir * 6;
let mut segments = [Segment::default(); 7];
let seg_params = [
(j_real, tj),
(0, ta),
(-j_real, tj),
(0, tv),
(-j_real, tj),
(0, ta),
(j_real, tj),
];
for (i, (j,t)) in seg_params.iter().copied().enumerate() {
segments[i] = cstate.produce_segment(j, t, self.step_size);
}
Profile {
segments: [
Planner::segmentFor()
]
segments,
}
}
pub fn step_size(&self) -> u32 { self.step_size }
}