Got the firmware to compile and produce something vaguely sensible.
This commit is contained in:
1
firmware/.envrc
Normal file
1
firmware/.envrc
Normal file
@@ -0,0 +1 @@
|
||||
eval "$(lorri direnv)"
|
||||
@@ -1,6 +1,6 @@
|
||||
Motion control in an interrupt.
|
||||
|
||||
= Parts
|
||||
== Parts
|
||||
This consists of two parts, the planner and the executor.
|
||||
|
||||
The planner receives target positions. Each time it receives a target
|
||||
@@ -13,7 +13,7 @@ the step lines of the MCU.
|
||||
|
||||
These two processes communicate by means of a command queue.
|
||||
|
||||
== Executor
|
||||
=== Executor
|
||||
1. Update a cycle counter
|
||||
2. Evaluates the next output of the position polynomial (3 adds)
|
||||
3. determine whether to toggle a stepper, and do so.
|
||||
@@ -21,7 +21,7 @@ These two processes communicate by means of a command queue.
|
||||
|
||||
|
||||
|
||||
== Command queue
|
||||
=== Command queue
|
||||
|
||||
The command queue takes the form of a ring buffer, with each item
|
||||
containing a motion segment. The ring buffer must be large enough to
|
||||
@@ -40,9 +40,9 @@ A motion profile segment consists of the following values:
|
||||
The following invariants hold for the command queue:
|
||||
|
||||
|
||||
== Planner
|
||||
=== Planner
|
||||
|
||||
=== Aborting
|
||||
==== Aborting
|
||||
|
||||
In case of an abort, the fastest stop profile will consist of at most
|
||||
3 segments: const -jerk to max -a, const -a to to lead-out, const +j
|
||||
|
||||
10
firmware/shell.nix
Normal file
10
firmware/shell.nix
Normal file
@@ -0,0 +1,10 @@
|
||||
{ pkgs ? import <nixpkgs> {} }:
|
||||
|
||||
pkgs.mkShell {
|
||||
buildInputs = [
|
||||
pkgs.stdenv
|
||||
|
||||
# keep this line if you use bash
|
||||
pkgs.bashInteractive
|
||||
];
|
||||
}
|
||||
@@ -2,6 +2,20 @@ pub mod motion {
|
||||
pub mod planner;
|
||||
}
|
||||
|
||||
use motion::planner::{Planner, Config};
|
||||
use crate::motion::planner::State;
|
||||
|
||||
fn main() {
|
||||
println!("Hello, world!");
|
||||
let planner_config = Config {
|
||||
j_max: 231.,
|
||||
v_max: 0.0,
|
||||
a_max: 100. , // WAG
|
||||
step_size: 0.2
|
||||
};
|
||||
let planner = Planner::new(5_000, planner_config)
|
||||
.expect("Planner config should succeed");
|
||||
|
||||
let profile = planner.plan_profile(planner.step_size() as i64 * 2500, State::default());
|
||||
println!("Profile: {:#?}", profile);
|
||||
|
||||
}
|
||||
|
||||
@@ -1,9 +1,18 @@
|
||||
//! The motion planner.
|
||||
//!
|
||||
//! Note that the equations in this file are rather complex and non-obvious.
|
||||
//! All of their derivations can be found in the motion-control.ipynb file.
|
||||
|
||||
use std::num::Wrapping;
|
||||
|
||||
pub struct Config {
|
||||
j_max: f32, // in mm/s^3
|
||||
v_max: f32, // mm/s^2
|
||||
// mm/s
|
||||
a_max: f32,
|
||||
step_size: f32, // um !
|
||||
/// Max jerk, in mm/s^3
|
||||
pub j_max: f32,
|
||||
/// Max velocity, in mm/s. If 0, 1 step every other tick.
|
||||
pub v_max: f32, // mm/s
|
||||
// Max acceleration, in mm/s^2.
|
||||
pub a_max: f32,
|
||||
pub step_size: f32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
@@ -13,11 +22,15 @@ pub struct Planner {
|
||||
// the appropriate power of time for the unit.
|
||||
v_max: u32,
|
||||
a_max: u32,
|
||||
rt2_a_max: u32, // square root of a_max
|
||||
step_size: u32,
|
||||
|
||||
// nsteps for each regime
|
||||
xmax_cj: u32,
|
||||
xmax_ca: u32,
|
||||
xmax_cj: u64,
|
||||
xmax_ca: u64,
|
||||
|
||||
tj_max: u32,
|
||||
ta_max: u32,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
@@ -25,10 +38,10 @@ pub struct Profile {
|
||||
segments: [Segment; 7]
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[derive(Copy, Clone, Debug, Default)]
|
||||
pub struct Segment {
|
||||
// Used by executor
|
||||
pub delta: [u32; 3],
|
||||
pub delta: [i32; 3],
|
||||
start_time: u32, // 0 to disable; set after completion.
|
||||
// used by planner
|
||||
v0: i32,
|
||||
@@ -37,9 +50,30 @@ pub struct Segment {
|
||||
}
|
||||
|
||||
impl Segment {
|
||||
pub fn state_at_time(&self, time: u32) -> State {
|
||||
let j = self.delta[2] as i32;
|
||||
let
|
||||
// This will work for |t|<=65535
|
||||
pub fn state_at_time_u64(&self, time: u32, step_size: u32) -> (i32, State) {
|
||||
let j = self.delta[2] as i32; // 6, 0, or -6
|
||||
let t = time as i64;
|
||||
let t2 = (time * time) as i64;
|
||||
// TODO: figure out what can be handled as u32, as 64-bit arithmentic is significantly slower
|
||||
let dp = (j / 6) as i64 * t * t2 + (self.a0 / 2) as i64 * t2 + self.v0 as i64 * t;
|
||||
let dv = (j / 2) * (t2 as i32) + self.a0 * time as i32;
|
||||
let da = j * time as i32;
|
||||
let time = self.start_time + time;
|
||||
let pe = self.p0 as i64 + dp;
|
||||
|
||||
let p0 = pe.rem_euclid(step_size as i64) as u32;
|
||||
let nstep = pe.div_euclid(step_size as i64) as i32;
|
||||
|
||||
|
||||
let new_state = State {
|
||||
time: self.start_time + time,
|
||||
p0,
|
||||
a0: self.a0 + da,
|
||||
v0: self.v0 + dv,
|
||||
};
|
||||
|
||||
(nstep, new_state)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -53,11 +87,15 @@ pub struct State {
|
||||
|
||||
impl State {
|
||||
fn segment_for(&self, j: i32) -> Segment {
|
||||
let a0_2 = Wrapping((self.a0 / 2) as u32);
|
||||
let a0 = Wrapping((self.a0) as u32);
|
||||
let j_6 = Wrapping((j / 6) as u32);
|
||||
let j_2 = Wrapping((j / 2) as u32);
|
||||
Segment {
|
||||
delta: [
|
||||
(self.a0 / 2) as u32 + (j / 6) as u32 + self.v0 as u32,
|
||||
self.a0 as u32 + j as u32,
|
||||
j as u32,
|
||||
((self.a0 / 2) + (j / 6) + self.v0),
|
||||
self.a0 + j,
|
||||
j,
|
||||
],
|
||||
start_time: self.time,
|
||||
v0: self.v0,
|
||||
@@ -66,12 +104,16 @@ impl State {
|
||||
}
|
||||
}
|
||||
|
||||
fn produce_segment(&mut self, j: i32, length: u32) -> Segment {
|
||||
fn produce_segment(&mut self, j: i32, length: u32, step_size: u32) -> Segment {
|
||||
let segment = self.segment_for(j);
|
||||
let t = length;
|
||||
let t2 = t * length;
|
||||
let t3 = t2 * length;
|
||||
self.p0 += (j / 6) as u32 * t3 + (self.a0 / 2) as u32 * t2 + self.v0 as u32 * t;
|
||||
let t = length as i32;
|
||||
let t2 = t * length as i32;
|
||||
let t3 = t2 as i64 * length as i64;
|
||||
let dp = (j / 6) as i64 * t3
|
||||
+ (self.a0 / 2) as i64 * t2 as i64
|
||||
+ self.v0 as i64 * t as i64;
|
||||
|
||||
self.p0 = (self.p0 as i64 + dp).rem_euclid(step_size as i64) as u32;
|
||||
self.v0 += j / 2 * t2 as i32 + self.a0 * t as i32;
|
||||
self.a0 += j * t as i32;
|
||||
|
||||
@@ -89,7 +131,12 @@ impl Planner {
|
||||
tick_frequency,
|
||||
v_max: 0,
|
||||
a_max: 0,
|
||||
rt2_a_max: 0,
|
||||
step_size: 0,
|
||||
xmax_cj: 0,
|
||||
xmax_ca: 0,
|
||||
tj_max: 0,
|
||||
ta_max: 0
|
||||
};
|
||||
|
||||
if ret.reconfigure(config) {
|
||||
@@ -104,36 +151,87 @@ impl Planner {
|
||||
pub fn reconfigure(&mut self, config: Config) -> bool {
|
||||
let tick_rate = self.tick_frequency as f32;
|
||||
let a_max = (6. * config.a_max * tick_rate / config.j_max)
|
||||
.clamp(0.0, (1 << 32) as f32);
|
||||
let v_max = (6. * config.v_max * tick_rate * tick_rate / config.j_max)
|
||||
.clamp(0.0, (1 << 31) as f32);
|
||||
let step_size = config.step_size * 6. * tick_rate * tick_rate * tick_rate / config.j_max / 1000.;
|
||||
.clamp(0.0, (1u32 << 31) as f32);
|
||||
|
||||
let v_max = if config.v_max == 0. {
|
||||
config.step_size * tick_rate / 2.
|
||||
} else {
|
||||
config.v_max
|
||||
};
|
||||
|
||||
let v_max = (6. * v_max * tick_rate * tick_rate / config.j_max)
|
||||
.clamp(0.0, (1u32 << 31) as f32);
|
||||
let step_size = config.step_size * 6. * tick_rate * tick_rate * tick_rate / config.j_max;
|
||||
if step_size > (u32::MAX / 2) as f32 {
|
||||
eprintln!("Failed to configure planner: stepsize = {}", step_size);
|
||||
return false;
|
||||
}
|
||||
self.a_max = a_max as u32;
|
||||
self.rt2_a_max = a_max.sqrt() as u32;
|
||||
self.v_max = v_max as u32;
|
||||
self.step_size = step_size as u32;
|
||||
|
||||
// Compute ta_max and tj_max
|
||||
self.tj_max = self.a_max / 6;
|
||||
self.ta_max = self.v_max / self.a_max - self.tj_max;
|
||||
|
||||
// Compute regime change points
|
||||
let amax2 = self.a_max * self.a_max;
|
||||
self.xmax_cj = self.a_max * amax2 / 18; // jmax = 6, xmax_cj = 2*amax^3/jmax^2
|
||||
self.xmax_ca = self.a_max * self.v_max / 6 + self.v_max * self.v_max / self.a_max;
|
||||
let a_max_2 = self.a_max as u64 * self.a_max as u64;
|
||||
self.xmax_cj = self.a_max as u64 / 18 * a_max_2; // jmax = 6, xmax_cj = 2*amax^3/jmax^2
|
||||
self.xmax_ca = self.a_max as u64 * self.v_max as u64 / 6 + self.v_max as u64 * self.v_max as u64 / self.a_max as u64;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
pub fn plan_profile(&self, dx: i32, state: State) -> Profile {
|
||||
// Note that dx is in internal units
|
||||
pub fn plan_profile(&self, dx: i64, state: State) -> Profile {
|
||||
let mut cstate = state;
|
||||
|
||||
let (tj, ta, tv) =
|
||||
if dx.abs() as u32 <= self.xmax_cj {
|
||||
|
||||
};
|
||||
let j = 6;
|
||||
let dir = dx.signum() as i32;
|
||||
let dx = dx.abs() as u64;
|
||||
|
||||
|
||||
let (tj, ta) =
|
||||
if dx <= self.xmax_cj as u64 {
|
||||
let tj = f32::cbrt(dx as f32 / 2. / j as f32) as u32;
|
||||
(tj, 0)
|
||||
} else if dx <= self.xmax_ca as u64 {
|
||||
let ta_quadrat =
|
||||
self.a_max * self.a_max / (4 * 36) // amax^3/(4*amax*jmax^2)
|
||||
+ (dx / self.a_max as u64) as u32;
|
||||
let ta = f32::sqrt(ta_quadrat as f32) as u32
|
||||
- self.a_max / 4;
|
||||
(self.tj_max, ta)
|
||||
} else {
|
||||
(self.tj_max, self.ta_max)
|
||||
};
|
||||
|
||||
// Now we have a value for t_j and t_a. Compute the velocity and necessary Δx during t_v
|
||||
let s4v = j * tj * (ta + tj);
|
||||
let ramp_dx = (j * tj) as u64 * (ta * ta + 3 * ta * tj + 2 * tj * tj) as u64;
|
||||
let tv = (dx - ramp_dx) * 2 / s4v as u64;
|
||||
let tv = ((tv + 1) / 2) as u32;
|
||||
|
||||
let j_real = dir * 6;
|
||||
let mut segments = [Segment::default(); 7];
|
||||
let seg_params = [
|
||||
(j_real, tj),
|
||||
(0, ta),
|
||||
(-j_real, tj),
|
||||
(0, tv),
|
||||
(-j_real, tj),
|
||||
(0, ta),
|
||||
(j_real, tj),
|
||||
];
|
||||
for (i, (j,t)) in seg_params.iter().copied().enumerate() {
|
||||
segments[i] = cstate.produce_segment(j, t, self.step_size);
|
||||
}
|
||||
Profile {
|
||||
segments: [
|
||||
Planner::segmentFor()
|
||||
]
|
||||
segments,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn step_size(&self) -> u32 { self.step_size }
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user